Prvních 39 sudých dokonalých čísel: 2n−1(2n − 1) pro
- n = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917.
- Dodnes není známo, zda existují také nějaká lichá dokonalá čísla. Bylo získáno již mnoho rozličných poznatků, ale žádný z nich dosud nepomohl liché dokonalé číslo najít, či vyřešit, zda vůbec existují. Carl Pomeranceprezentoval heuristický argument, že žádná lichá dokonalá čísla neexistují. Stejně tak existuje domněnka, že neexistují žádná lichá Oreova čísla (kromě jedné). Pokud by se ukázala jako pravdivá, vyplývala by z toho i neexistence lichých dokonalých čísel.